

Wergelandsveien 7 case study

The renowned Wergelandsveien 7 building in Oslo, Norway was renovated in 2015 utilizing Q-Air 6-pane glazing and a brief case study is presented here. 60% energy savings was calculated, while 50% (i.e., 1.000.000 kWh/a) was actually saved as a result of the renovation. Unfortunately, not all parts of the building were improved and no sophisticated optimisation, which could offer an improved energy end-result, was undertaken.

Aleš Kralj, February 2018

Table of contents

Installed 6-pane glazing system overview	3
Annual energy results	4

Installed 6-pane glazing system overview

Before the renovation, the Wergelandsveien 7 building in Oslo was fitted with 1960's triple-pane glazing with wooden framing. The estimated U_g before the renovation¹ was 2.2 W/m²K. Below the windows there were parapets with a U value¹ of 0.59 W/m²K.

Two glazing systems were used in the renovation; the ground floor featured large panoramic "gigant" 6-pane panels with $U_g=0.26$ W/m²K, while the upper floors had customised 6-panes with 20 mm spacers and $U_g=0.24$ W/m²K (calculated according to EN 673). The largest installed glass unit was 3332x2054 mm. Detailed data sources are given in reference².

Image above, Wergelandsveien 7 building, ground floor close-up and upper floor close-up view.

	Input parameters	Upper floors
	Framing configuration	Calculated U _{cw} EN ISO 12631:2012
	U _g =0.24 W/m²K U _f =0.80 W/m²K Ψ=0.016 W/mK	Glass element 1166x1436 mm U _{cw} =0.36 W/m ² K
	Input parameters	Ground floor
	Framing configuration	Calculated U _{cw} EN ISO 12631:2012
	U _g =0.26 W/m ² K U _f =0.80 W/m ² K Ψ=0.016 W/mK	Glass element 3332x2054 mm U _{cw} =0.32 W/m ² K

¹ MALOVRH-REBEC K., et. al., Multipane single and double skin transparent façade building performance in terms of indoor daylight, heating and cooling requirements. V: *Advanced building skins*, 12th Conference on Advanced Building Skins 2-3 October 2017, Bern, Switzerland. Bern: Advanced Building Skins., 774-784 (2017).

² Uroš Leskovšek, "REPORT, CALCULATION OF U VALUE PROJECT: WERGELANDSVEIEN", Trimo report, September (2015).

The upper floors of the building had opaque parapets, which were gas filled with mineral wool combos and an overall U_{cw} value of 0.13 W/m²K. The average U_{cw} value of the upper floors² was 0.23 W/m²K.

Annual energy results

Building energy parameters:

	Specific energy consumption	Total energy consumption 10.000 m ²
Before renovation ³	220 kWh/m ² a	2,200,000 kWh
After renovation: expected ³	100 kWh/m²a	1.000.000 kWh
After renovation: measured ⁴	110 kWh/m ² a	1.100.000 kWh

It is unfortunate that more accurate measurements were not provided despite numerous requests.

It is easy to see that the performance gain is nowhere near where 6-pane glazing can go. The building was not designed as a low-heating building. Glazed surfaces had the EN410 solar gain value of 0.25. To the best of our knowledge, the building does not use variable air volume ventilation, which would save a lot of heating demand. We also assume that heating is direct electric as it is common in Norway. Electricity end-consumption seems high if heat pumps were used. One of the other contributing factors to the non-optimal performance is the fact that not all building was renovated.

Since completion – 3-yaeasrs to-date, the building performed flawlessly and to client's satisfaction⁵.

Nevertheless, application of the 6-pane glazing without modulated external solar shading has demonstrated that such a system's performance is predictable. If reported values are to be believed, then 10% discrepancy between achieved and calculated energy performance is an excellent achievement.

³ Atle Geving, "Kutter strømregningen med 60 prosent", <u>https://www.dagbladet.no/</u> 9. February 2016 ⁴ Reported values by the building owners.

⁵ "Höegh Eiendom først i Norge med innovativ fasadeløsning", ENOVA, <u>https://www.enova.no/bedrift/bygg-og-eiendom/historier/hegh-eiendom-forst-i-norge-med-innovativ-fasadelosning/</u> (2017).