

Q-Air – detailed properties

- Seasonal variability of solar heat gain (g value)
- Centre of glass heat transmission (Ug)
- Light transmission (LT), solar heat gain (g)
- Temperature dependency of the centre of glass Ug value
- \circ Linear heat transmittance value (ψ values)
- $\circ \quad \text{Sound insulation} \quad$
- o EN 1279-2 certificate

January 2021

■ REFLEX Q-Air

Table of contents

Solar gain seasonal variability	3
Centre of glass heat transmission (Ug)	4
Light transmission (LT), EN410 solar heat gain (g)	5
Temperature dependency of the centre of glass U_g value	6
Linear heat transmittance value (ψ – values)	7
Sound insulation	7
IFT EN 1279-2 certificate	9

Solar gain seasonal variability

Our research showed that the relative g-value reduction effect is independent of the coated solar control glass selection. It depends, however on the number of glass panes. We model the monthly average g-value reduction effect with a real hourly weather model with direct and diffuse (cloud cover) light with accurate incidence angles.

It might come as a surprise that the summer effective g-value reduction according to hourly weather data is also fairly independent of the place (geographical latitude).

For annual cooling demand calculations, we recommend that the hourly weather model reduction factor is used for a glass unit having 4 to 6-panes. Solar gain, g-value is thus calculated as:

The change in solar heat-gain (g-value) originates in direct solar light being partially reflected at many glass. Transmitted solar energy lavers of diminishes more at high angles of incidence as light reflections increase with angle of incidence¹.

East West -

Geffective = RF x Gstandard EN410

-South 🗕

where:

South façade	Reduction factor, RF = 0,67
East, west, north façade	Reduction factor, $RF = 0,75$

¹ Kralj, Aleš, et al. "Investigations of 6-pane glazing: Properties and possibilities." Energy and Buildings **190** (2019): 61-68. Click HERE to see the Open access article.

Centre of glass heat transmission (Ug)

Calculation standard:

• EN673:2011

Boundary conditions:

Ti	(internal)	20°C
Тe	(external)	0°C
hi		7.7 W/m ² K
he		25 W/m²K

. .

Model data synopsis:

	Glass	Gap	Glass								
Q-AIR3K					6 mm	14 mm	3 mm	14 mm	3 mm	14 mm	44.2
Q-AIR4K			6 mm	14 mm	3 mm	14 mm	3 mm	14 mm	3 mm	14 mm	55.2
Q-AIR5	8 mm	18 mm	3 mm	18 mm	3 mm	18 mm	3 mm	18 mm	4 mm	16 mm	55.2
Q-AIR5G	10 mm	18 mm	4 mm	18 mm	4 mm	18 mm	4 mm	18 mm	5 mm	18 mm	55.2

Krypton 95% * Argon 90% * Air

* Low-E coated glass on at least one side.

Centre of glass thermal transmittance (Ug):

Q-AIR3K	0.29 W/m²K
Q-AIR4K	0.21 W/m²K
Q-AIR5	0.26 W/m ² K
Q-AIR5G	0.26 W/m ² K

Light transmission (LT), EN410 solar heat gain (g)

	Selectable light transmittance (EN410)	Total solar energy transmittance, g- value ¹ (EN410)	Number of glass panes	Vented expansion chamber
Q-AIR3K	0,32 - 0,61	0,20 - 0,34	4	No
Q-AIR4K	0,30 - 0,55	0,18 - 0,31	5	No
Q-AIR5	0,27 – 0,51	0,17 – 0,29	6	Yes
Q-AIR5G	0,27 – 0,51	0,17 – 0,29	6	Yes

¹ This is the g_{standard(EN410)} value. Total solar energy transmittance of each glazing unit depends on the light transmittance selection.

Data is calculated with LBNL Window 7.7 program.

Temperature dependency of the centre of glass U_g value

Heat transfer through the glazed unit consists of heat radiation exchange among the glass panes and gas-gap related heat transfer combining conduction and convection. Q-Air reduces heat transfer using low thermal conductivity gas, which in most applications is argon and through the application of Low-E coatings, which mitigate heat radiation. Sealed glass units' centre of glass U value (Ug) change with exterior conditions.

A simulated (EN 673) glass deflection's dependent Ug for the Q-Air 5 and triple pane unit:

Below you find FEM analysis (Q-Air 5) layout of the glass panes at most extreme points from diagram above:

$\rm U_{g}\mathchar`-values$ were calculated with Berkeley Lab Window 7.4. according to EN673:2011

Toutdoor	Solar irradiation	U _g (W/m²K)	U _g (W/m ² K)
(°C)	(W)	(Temperature depended)	(Temperature & deflection depended)
- 40	0	0.311	0.319
-20	0	0.271	0.280
0	0	0.254	0.256
20	383	0.261	0.252
30	683	0.264	0.249
40	783	0.268	0.252
50	783	0.271	0.261

Modelled panel size: 750 x 1500 mm;

Boundary conditions for center of glass thermal transmittance calculation: Internal temperature $T_i = 22$ °C; external temperature $T_e =$ from -40°C to 50°C; internal heat transfer coefficient $h_i = 7.0$ W/m²K; external heat transfer coefficient $h_e = 15.0$ W/mK; External glass: Arcon Sunbelt A70;

Q-Air 5 characteristic: g-value = 0.30; T_{vis} = 0.46; T_{sol} = 0.20; R_{fvis} = 0.20; R_{fsol} = 0.43;

Linear heat transmittance value (ψ – values)

Calculation standard: ISO 10077-2:2012

- Thermal conductivities, boundary conditions ISO 10077-2:2012.
- TGI spacer within a two-box model is with λ =0,34 W/m²K according to IFT report 2010. ²
- Calculation tool: LBNL Therm 7.7.
- Modelled height of the edge-of-glass, $b_g = b_p = 300$ mm.

Linear thermal transmittances (ψ):

Sound insulation

By default, thick Q-Airs, Q-Air 5, and Q-Air 5G offer sound insulation, Rw, of 43 dB, where with glass options 55 dB is available. Thinner Q-Airs, Q-Air 3K, and Q-Air 4K offer sound insulation performance, Rw, 35 dB or better.

Q-Air 5 test result example:

² Shin, Mi-Su, et al. "Determination of equivalent thermal conductivity of window spacers in consideration of condensation prevention and energy saving performance." *Energies* **10**.5 (2017): 717.

Gustavsen, Arild, et al. "Key elements of and material performance targets for highly insulating window frames." *Energy and Buildings* **43**.10 (2011): 2583-2594.

IFT EN 1279-2 certificate

Issued to Trimo (program owner at the time).

		Ift
	Classification Report	ROSENHEIM
Number Owner	18-000461-PR01 (NW-H01-09-en-01) Trimo d.o.o. Prijateljeva cesta 12 8210 Trebnic	Basis *) EN 1279-2 :2002-11 *) and corresponding national versions e.g. DIN EN) Test report: 18-000461-PR01 PB- H01-09-en-01
	Slovenia	Representation
Product Designation	Insulated glass unit quintuple System: Q-Air 5	
Details	Overall dimensions (W x H) 352 x 502 ; Glass configuration 4 / 18 / 3 / 18 / 3 / 18 / 3 / 18 / 4; spacer: Manufacturer Technoform Holding GmbH, - Kassel; Designation TGI Spacer M; Material Polypropylene with stainless steel; Secondary sealant: Manufacturer Kömmerling, Chemische Fabrik GmbH - Pirmasens; Designation GD 920; Material Based on silicone; Primary sealant: Manufacturer Designation	Validity There is no time limit. When using this document the up- to-dateness of above basis and the conformity of the product have to be observed.
Special features	IGU with 5 glass panes, internal panes have one hole each	The data and results given relate solely to the tested/described specimen. This test/evaluation does not allow any statement to
Long term test	method according to EN 1279-2 :2002-11 •quirement: fulfilled	of the present structure regarding performance and quality. Notes on publication The ift-Guidance Sheet "Condi- tions and Guidance for the Use of ift Test Documents" applies.
ift Rosenheim 17.07.2018	ll u titu	
h. Ceu	MANN"	